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Combustion of a mixture of two solid reactants is considered. A combined geometrical and physicochemical
model of mixing of these reactants is proposed. The model takes into account random distribution of reactants
and voids over the system. This allows description of incomplete burning of reactants. The model is used for
studying the combustion wave propagation in a binary heterogeneous mixture. The obtained results are com-
pared with those calculated from the perfect-mixing model, which implies that the deficientswith respect to the
stoichiometryd component burns completely. It is shown that micrononuniformity of mixing not only reduces
the combustion wave temperature and velocity but also can lead to a shift of the maximal wave velocity away
from the stoichiometric composition of the mixture. The results of this study allow us to suggest that one of the
main reasons for such a shift, which was observed in a number of experimental works, is structural disorder of
binary mixtures.
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I. INTRODUCTION

The self-propagating high-temperature synthesissSHSd,
or synthesis in the self-sustaining combustion wave, is one of
the most energy-saving and cost-effective methods for pro-
ducing inorganic compounds, in particular, intermetallics and
ceramicsf1g. This synthesis proceeds in a heterogeneous
condensed system, i.e., a mixture of powders. The structure
of heterogeneous condensed mixtures is one of the major
factors affecting the combustion wave characteristics as well
as the properties of synthesized products. An important role
of the charge structure in SHS processes became especially
evident after experimental studies usingin situ high-
resolution microscopic video recordingf2–5g. Most of solid
combustible systems are characterized by randomsdisor-
deredd spatial distribution of different-kind particles. There
were only a few attempts in the literature to take into account
this randomness and its influence on the combustion of het-
erogeneous condensed systems.

One aspect of combustion in disordered heterogeneous
systems is the loss of smoothness and continuity of the com-
bustion front when its characteristic scale becomes compa-
rable with the size of combustible particles. It is well known
that in such systems the propagation of combustion process
can bear a percolation natureslike forest firesd f6–9g. A num-
ber of works on percolation combustionsfor the forest-fires
problemd have merely a formal character due to the use of
formal cellular automaton rules. First attempts to relate the
percolation characteristics and critical exponents with a set
of structural, thermophysical, and kinetic properties of a
forest-fire system were made in Ref.f7g. But basically, a
problem of determining the conditions for a transition from
frontal to percolation regimes in SHS, where random struc-
ture of the charge plays a key role, is still an open issue.

Another aspect of the effect of randomness on combustion
relates to a wide class of binarysor multicomponentd sys-

tems, even if the spatial scale of combustion front much
exceeds the scale of structural disorder of the system. In such
systems, the affecting factor is nonuniform mixing of com-
ponents. In this case, the interfacial area of reactants plays an
important role. In Ref.f10g, the interfacial area of a binary
heterogeneous system was studied using a statistical model
and its effect on SHS was discussed qualitatively.

The present work is aimed at the development of a model
accounting quantitatively for the influence of disordered
structure of a binary heterogeneous solid mixture on com-
bustion. The concept of the study lies in the following: to
apply a statistical approach to the description of the system
structure and then incorporate the determined structural char-
acteristics into a conventional model of combustion wave
propagationsthe continuum descriptiond.

The key point of our consideration is the “contact point”
model which implies thatsid the surface area of an exother-
mic chemical reaction is proportional to the number of con-
tacts between partiles of the first and second reactant, and the
combustion rate is proportional to this surface area,sii d each
particle of any reactant is distributed in equal proportion be-
tween all its nearest neighbors of the opposite kind during
the reaction. Before proceeding to the detailed development
of the model it is necessary to justify its applicability to the
description of combustion waves propagation in a certain
class of heterogeneous media.

There are a number of examples when the propagation of
combustion wave over a heterogeneous medium is accompa-
nied by complete melting of a lower-melting-point reactant
and its spreading over the porous space. Therefore such a
situation is not described by the contact point model. How-
ever, there are certain SHS systems where a purely solid-
state interactionsi.e., via solid-state diffusiond mechanism
works. We can mention here the system Ta/C as an example.
The adiabatic temperature of the TaC formation in SHS
wave, Tad=2700 K, is below the tantalum melting point,
TmsTad=3270 K ssee Ref.f11gd. Similarly, SHS temperature
of molybdenum boride in the Mo/B system is lower than the
Mo melting temperaturef12g. For such systems our model is
valid.*E-mail address: gps@hmti.ac.by
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Besides, known are systems with quasi-solid-state inter-
action. Those are systems where the SHS temperatureTad
exceeds the melting temperature of a metallic reactantTm.
But during heating from the ambient temperature toTm in the
preheat zone of the SHS wave, a shell of a primary refractory
product forms on the particle surface. At attainingTm, the
particle core melts but the outer shell does not permit the
melt to spread. In this case, solid-state diffusion through this
spherical layer is the rate-limiting stage of interaction. This
situation is analyzed in detail on the example of a metal-gas
sviz., Ti/Nd system in paperf13g. A similar phenomenon is
possible in metal-carbon systemsse.g., Ti/Cf14gd as well for
small-sized metal particles. In such situations, the number of
contacts between different-kind particles plays an important
role. In the next part of the paper, on the basis of contact
point model we examine two characteristics of the random
mixture, viz. the interfacial area and the mean degree of con-
version, which are important for the combustion problem.

II. STRUCTURAL MODELS

A. Two-component system without porosity

A heterogeneous disordered system composed of particles
of two-kind reactants,A andB sA particles andB particlesd is
considered. All the particles are of the same densityr, shape,
and size and are placed in the sites of a regular latticese.g.,
square, Fig. 1d. ParticlesA and B are randomly distributed
over the system and their numerical fractions arep and
1−p, respectively. Since absolutely random distribution is
assumed, the properties of an arbitrary particle are not cor-
related with the properties of its neighbors, and hence the
probability that the particle is ofA or B kind is equal to the
fraction of such particles in the system:PA=p,PB=1−p. It is
also supposed that for product formation one volume unit of
the A particle should react withnst volume units of theB
particle. Parameternst is an analog of chemical stoichio-
metric coefficient. The volumetric stoichiometric concentra-
tion of particlesA is expressed through parameternst as pst
=1/snst+1d.

The first parameter required to construct the model is the
total number of contacts between particles of different kind
per one particle. This value can be found using the percola-
tion theory methods. As shown in Ref.f10g, the number of
contacts between different-kind particles per one particle of
the system is determined by expression

Etot = zps1 − pd. s1d

Here z is the coordination number of the lattice, i.e., the
number of nearest neighbors per site. ParameterEtot is

known in the percolation theory as “energy”f15g, but in the
considered situation its meaning differs from the conven-
tional use of this term in physics. Because of this, hereinafter
this term is written in quotes. It should be noted that “en-
ergy” has its maximal value for a random system at point
p=0.5, andEtot

smaxd=z/4. Particularly, in the case of square
lattice sz=4dEtot

smaxd=1, but for a regular configurationsfor
example, chess packingd Etot

smaxd=4. In the latter case, each
particle has four contacts with particles of the other kind. So,
taking into account the disorder in the system we came to the
four-time decrease of the interfacial area for the case of a
two-dimensional square lattice.

The second parameter, which is important for the combus-
tion wave propagation in a disordered system, is the mean
reacted partsmean final conversion degreed of one of the
reactantsÃspd for given parameters of the system. Hence-
forward, reactantA will be considered as a basic one for
calculatingÃspd:

Ãspd = 1 −
rA

f

rA
0 = 1 −

rA
f

pr
. s2d

HererA
0 andrA

f are the mean initial density of reactantA and
its density after the reaction completion, respectively.

We suppose that a necessary condition for reaction be-
tween two particles is their immediate contact. Unlike or-
dered structures where the existence of such contact is al-
ways assumed for each particle, in a random mixture some
particles can have no contacts with the other reactant due to
imperfect mixing. This results in incomplete burning of
reactants.

The calculation of the value ofÃspd is based on the use
of the second assumption of contact point model about equal
distribution of reacting particle between its opposite kind
neighbors.

Let us consider an arbitrary particleA, which is denoted
by subscript “0” sFig. 1d. Using the example presented in
Fig. 1, we calculate the mean final conversion degreeswithin
the frame of the considered modeld for particleA0. Let par-
ticle A0 have twoB particles in its neighborhoodsthe latter
are denoted by subscript “1”d. Then the fraction of particle
A0, which can react withB particles, isa2=Gs2/nstd. Here
function Gsxd with the argumentx is determined as

Gsxd = Hx,x , 1;

1,x ù 1.
J s3d

Hence, if nst=3, the reacted part of particleA0 is equal to
2/3; if nst=2 then the whole particleA0 will be burnt; at last
if nst=1 then the whole particleA0 will react but on the
average oneB1 particle does not react at all. It should be
noted that each of the particlesA sincluding particleA0d can
have 0 toz neighbors with a different probabilitysthe con-
centration ofA particles,p, is givend. Then, taking into ac-
count that these are pairwise incompatible events and using
the formula for total probability, it is possible to write for
Ãspd:

FIG. 1. Determination of the burnt fraction of particleA0 sex-
planations in textd.
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Ãspd < o
i=0

z FaiSz

i
DPA

z−iPB
i G = o

i=0

z FGS i

nst
DSz

i
Dpz−is1 − pdiG .

s4d

Here s1−pdi is the probability that particleA0 has anyi B
neighbors;pz−i is the probability that the restsz− id neighbors
of particleA0 areA particles;ai is the reacted part of particle
A0 under the condition that it hasi B-particle neighbors.

Expressions4d is a rather rough approximation yet. It fol-
lows from a simple qualitative consideration that for a sys-
tem withnst=1 there is a definite symmetry between compo-
nentsA andB, i.e., their formal transposition will not lead to
changes in the reactant concentration giving the maximal
combustion wave velocity. However, this symmetry disap-
pears when using expressions4d.

For a more accurate determination ofÃspd value, it
should be taken into account that particlesB1 can react not
only with particleA0 but with otherA particles as wellsin
Fig. 1 these particles are denoted by subscript “2”d. Let par-
ticle A0 has i B neighbors. Each of theseB1 particles can
neighbor, aside from particleA0, with 0 to z−1 otherA par-
ticles sthey are marked asA2 in Fig. 1d. If i B1 particles have
respectivelyh j1, j2,… , j ij A2 neighbors, then in first approxi-
mation the probability of occurrence of such combination on
the lattice is determined as

p
k=1

i Sz− 1

jk
Dpjks1 − pdz−1−jk,

and the fraction of reacted particleA0 in this case is ex-
pressed by the formula

GS 1

nst
o
k=1

i
1

jk + 1
D ,

where functionG is defined by Eq.s3d and the value in
parentheses is its argument.

By summing over all possible combinationsh j1, j2,… , j ij,
one can arrive to a corrected expression for the reacted part
ai of particleA0:

ai < o
j1=1

z−1

¯ o
j i=1

z−1

GS 1

nst
o
k=1

i
1

jk + 1
D

3Fp
k=1

i Sz− 1

jk
Dpjks1 − pdz−1−jkG . s5d

Then the mean final conversion ofA particles over
the system,Ãspd, can be determined by the following
expression:

Ãspd < o
i=1

z Ho
j1=1

z−1

¯ o
j i=1

z−1

GS 1

nst
o
k=1

i
1

jk + 1
D

3Fp
k=1

i Sz− 1

jk
Dpjks1 − pdz−1−jkGSz

i
Dpz−is1 − pdiJ .

s6d

Approximations made during derivation of Eqs.s4d–s6d
need a more detailed explanation, which will be made by
giving an example of a square latticesFig. 2d. According to
the proposed computational scheme an arbitrary particle of
the system is consideredsit is labeled by number 0d. The first
two layers of the nearest neighbors of this particle are labeled
in Fig. 2 by numbers 1 and 2. As already noted above, it is
not sufficient to consider only one layer of nearest particles
slabel 1d for a correct description of conversion of reactants.
The second layer of the nearest particlesslabel 2d should also
be taken into account. Those particles, which can immedi-
ately “interact” during chemical reaction, are connected by
bonds in Fig. 2. It is difficult to describe analytically the fact
that the properties of a particle in the second layer of a regu-
lar lattice affect simultaneously the reaction behavior of two
particles in the first layersFig. 2d. Therefore the structure
pattern corresponding to the regular latticesFig. 2d was re-
placed by a more simplified onefFig. 2sbdg. Such a pattern is
known in physics as a Bethe lattice. In this case, properties
of a particle in the second layer influence the conditions of
reaction in only one particle of the first layer. It is important
that the total number of nearest neighborsz sFig. 2d and the
probability to find particle of the first or the second kind are
not changed. For a simplified case of a Bethe lattice it is
possible to obtain an analytical expression for a mean degree
of reactant conversionfEq. s6dg. The substitution of structure
patterns implies that from the mathematical viewpoint, we
have neglected some correlations between properties of par-
ticles in the second layerfthey are connected by arrows in
Fig. 2sbdg. Two such particles in a Bethe lattice correspond to
one and the same particle in the regular lattice. To estimate
inaccuracy introduced by the above mentioned substitution,
statistical Monte Carlo simulation was performed. Results of
this simulation have shown that within the frame of the pro-
posed model, Eq.s6d has an inaccuracy below 2%. This
small value of inaccuracy is explained by the fact that the
Bethe lattice was actually used to take into account the prop-
erties of particles belonging only to the second layer of near-
est neighbors.

Theoretically, the procedure for more accurate determina-
tion of ai valuesfEq. s5dg can be continued by taking into
account the fact thatA2 particles react not only withB1 par-
ticles but are shared between other nearestB particlessFig.
1d. As noted above, numerical simulation has shown that
taking into account the properties of neighbors in the second
layer allows us to describe the mean degree of reactant con-
version with a good accuracy. On the other hand, expression

FIG. 2. Explanatory scheme for derivation of Eqs.s4d–s6d; a is
a fragment of regular square latticesz=4d; b is a fragment of a
Bethe latticesz=4d.
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s6d permits meeting the above mentioned symmetry condi-
tion sat nst=1d with the inaccuracy of 0.01 with respect to
relative concentration. The presented estimations of the error
allow us to restrict our consideration to the use of Eq.s6d
because its accuracy corresponds to the general accuracy
level of the model itself. The developed model can be gen-
eralized to take into account the porosity of the system.

B. Two-component system with porosity

Let « is the porosity of a binary powder mixture, i.e., the
fraction of volume occupied by voids. Voids can be treated as
the third componentsalong with particlesA and Bd. It is
implied that “void” particles are of the same size and shape
as particlesA andB. Since the distribution of particles over
the system is absolutely random, a probability to find the
void in an arbitrary cell of the system isP«=«. If p, as
previously, is the fraction ofA particles in the system, then
the probability of finding a particleA or B in a cell is PA
=p and PB=1−p−«, correspondingly. In a system with po-
rosity the stoichiometric coefficientnst should be expressed
as follows:

nst =
1 − pst − «

pst
. s7d

Based on the computational method described in Ref.
f10g, for the “energy” of the whole system we obtain

Etotsp,«d = s1 − p − «do
j=1

z

jSz

j
Dpj

3o
m=0

z−j Sz− j

m
D«ms1 − p − «dz−j−m. s8d

The second sum in Eq.s8d can easily be calculated:

s1 − pdz−j = s1 − p − « + «dz−j = o
m=0

z−j Sz− j

m
D«ms1 − p − «dz−j−m.

s9d

Hence upon summation in Eq.s8d we obtain

Etotsp,«d = zps1 − p − «d. s10d

As expected, expressions10d grades into expressions1d at
«=0.

Similarly, for the mean conversion degree of the system
we arrive at the following expression:

Ãsp,«d < o
i=1

z Ho
j1=1

z−1

¯ o
j i=1

z−1

GS 1

nst
o
k=1

i
1

jk + 1
D

3Fp
k=1

i Sz− 1

jk
Dpjk o

m=0

z−1−jk Sz− 1 − jk
m

D
3«ms1 − pdz−1−jk−mGSz

i
Ds1 − p − «di

3o
n=0

z−i Sz− i

n
D«npz−i−nJ . s11d

It can be shown in the way it was done for expressions9d

that on=0
z−i sz−i

n d«npz−i−n=sp+«dz−i. Then, taking into account

this expression and Eq.s9d, one can obtain from Eq.s11d

Ãsp,«d < o
i=1

z Ho
j1=1

z−1

¯ o
j i=1

z−1

GS 1

nst
o
k=1

i
1

jk + 1
D

3Fp
k=1

i Sz− 1

jk
Dpjks1 − pdz−1−jkG

3Sz

i
Ds1 − p − «disp + «dz−iJ . s12d

For function Ãsp,«d, in the limit «→0, expressions12d
grades into Eq. s6d. It should be noted that for«
→1 Ãsp,«d→0.

The derived expressionss1d, s6d, s10d, and s12d will be
used in further modeling of the combustion wave propaga-
tion in a binary disordered heterogeneous system.

III. PROPAGATION OF COMBUSTION WAVE IN A
BINARY DISORDERED MIXTURE OF REACTANTS

A. Governing equations

To reveal the basic effects of the micrononuniformity of a
two-component mixture on combustion we consider a simple
model of a continuous combustible medium where the spa-
tial scale of the combustion wave much exceeds the particle
scale of the mixture. On the microlevel, the above-described
structural model is used. The unavoidable imperfect mixing
on the microlevel in disordered systems results in incomplete
conversion of reactants. Thus if the initial mean density of
componentA is rA

0 =rp, then the instantaneous relative con-
version degree of this component is determined as

h =
rA

0 − rA

rA
0 − rA

f =
rA

0 − rA

rA
0Ãsp,«d

. s13d

Here rA is the instantaneous mean density of theA compo-
nent.

A kinetic model of chemical conversion in the system is
described by a global Arrhenius-type reaction with initiation
temperatureTin, and we imply that the reaction rate, i.e., the
mass of componentA consumed in a unit volume per unit
time is proportional to the number of interphase contacts per
lattice site:

WsT,hd = rkEtotspd expF−
E8

RT
GHsT − Tindfshd. s14d

Here T is temperature of particlefKg; k is the pre-
exponential factorf1/sg; E8 is the activation energy of the
reactionsJ/mold; R is the universal gas constant;fshd is the
reaction retardation function due to solid-product formation.
In the simplest case we use Heaviside function forfshd as
well: fshd=Hs1−hd.

Within the frame of this model we arrive at the system of
energy and mass conversion equations in the reference frame
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connected to the combustion front moving with velocityU:

− rcps1 − «dU
dT

dx
= l

d2T

dx2 + QWsT,hd, s15d

− rpÃsp,«dU
dh

dx
= WsT,hd. s16d

HereQ is the reaction heatsJ/kgd; l is the thermal con-
ductivity of particlessWt/m Kd; cp is the heat capacity of
particles sJ/kg Kd. Boundary conditions to Eqs.s15d and
s16d are formulated as follows:

x → − `:T = Tb, h = 1,
dT

dx
=

dh

dx
= 0; s17d

x → + `:T = T0, h = 0,
dT

dx
=

dh

dx
= 0. s18d

Equationss15d and s16d are readily integrated over inter-
val f−` , +`g with the use of boundary conditionss17d and
s18d to give the following expression for the adiabatic com-
bustion temperatureTb smaximal temperature of the combus-
tion frontd:

Tb = T0 +
QpÃsp,«d
s1 − «dcp

. s19d

The structure of a disordered mixture is characterized by
two values: porosity« concentration ofA particlesp. But
since the heat capacity of empty sitessporesd is negligible,
the adiabatic combustion temperature in the case of perfect
mixing depends only on the equivalence ratio of components
A andB. This conventional for the combustion theory param-
eterf16g is defined as the ratio of volume of componentA to
the volume of componentB divided by the same ratio for the
stoichiometric mixture:

f = S p

1 − « − p
DYS pst

1 − pst − «
D . s20d

If f,1 then componentA is deficient; in the opposite case
sf.1d this component is in excess. Then, using Eqs.s7d and
s20d the adiabatic combustion temperature for a random sys-
tem can be expressed as follows:

Tb = T0 +
QÃsp,«df
snst + fdcp

. s21d

B. Dimensionless variables and equations

The characteristic temperature for transition to dimension-
less variables can be determined as the adiabatic combustion
temperature attained after complete burning of a stoichio-
metric mixture ofA andB components with perfect mixing
si.e., at p=pst,f=1, and Ã=1d: Tp=T0+Q/ snst+1dcp

=T0+DTad
st . The characteristic temperature scale isDTp

=RTp
2/E8. Thus this scale is the same for all systems with a

given value ofnst but different porosity«. The characteristic
time scale is more specific because the time of mixture burn-

ing depends on the porosity at fixedf. In the considered
problem, the characteristic time scale is chosen equal to the
reaction time for the stoichiometric mixture at the character-
istic temperature and given porosity:tp=pstfkEtotspstd exp
3s−E8 /RTpdg−1. Thus the time scale varies with changing«
becausepst and Etot depend on porosity. On one hand, this
choice oftp permits simplifying the final dimensionless equa-
tions. On the other hand, below we consider only the ratio of
the combustion wave velocity to its maximal value at given
porosity and this choice oftp does not influence the final
results. It should be noted that by using porosity-specific
scaling factors for proceeding to dimensionless variables we
exclude from consideration the effect of thermal conductivity
on the combustion wave velocity which can mask the role of
nonuniform mixing and, strictly speaking, deserves a sepa-
rate consideration.

Definitions of dimensionless variables are close to those
conventionally used in the combustion theory:j=x/xp is a
dimensionless spatial coordinate;u=sT−Tpd /DTp is dimen-
sionless temperature;u=U /up is a dimensionless combustion
wave velocity. The other scaling factors arexp=Îagtp schar-
acteristic width of the reaction zoned, wherea is the thermal
diffusivity of particlessm2/sd ; up=xp / tp and the dimension-
less parameters of the system areg=DTp /DTad

st

=RTp
2snst+1dcp/E8Q;b=DTp /Tp=RTp /E8.

Then the dimensionless initial temperature of the system
is u0=−1/g and dimensionless combustion temperature is

ub =
1

g
SÃ

p

pst
− 1D =

1

g
SÃf

nst + 1

nst + f
− 1D . s22d

Master equationss15d ands16d are reshaped in the dimen-
sionless form as follows:

− gu
du

dj
=

1

1 − «

d2u

dj2 + ssfdFsu,hd, s23d

− psfdÃs«,fdu
dh

dj
= ssfdFsu,hd, s24d

where

Fsu,hd = wsudcshd, wsud = Hsu − uind expS−
u

1 + bu
D,

cshd = Hs1 − hd, psfd =
p

pst
= f

nst + 1

nst + f
,

ssfd = fS nst + 1

nst + f
D2

=
p2sfd

f
.

Reshaping of the boundary conditions is trivial and is not
presented here.

After conventional transformations(substituting the right-
hand side of Eq.s24d into Eq.s23d, integrating the latter over
interval fj , +`g, and usingu as an independent variable) we
arrive at the final differential equation in the space of vari-
ablesh andu:
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dh

du
=

ssfdFsu,hd
psfdÃs«,fds1 − «du2fgsu − u0d − psfdÃs«,fdhg

.

s25d

This equation was used for numerical calculation of param-
eter u by the shooting method: the equation was integrated
from u=uin to u=ub and the parameteru was fitted to meet
the boundary conditionsh=0 at u=uin andh=1 at u=ub.

Equations25d is close to conventional equations used in
the theory of gasless combustion. The difference from the
conventional form lies in functionsssfd ,Ãs« ,fd, andpsfd
which reflect the dependencies of the interfacial area, final
conversion degree, and heat release on the structural param-
eters of the mixture.

IV. RESULTS AND DISCUSSION

A three-dimensionals3Dd simple cubic latticesz=6d was
used to model the structure of binary mixture. The following
values of dimensionless parameters characterizing the com-
bustion process were used in numerical modeling:g
=1/6,b=1/8,uin=−0.8/g. These values of parametersg
and b correspond to stable combustion. The approach de-
scribed in Sec. II of this paper permits calculating the mean
final conversionfEq. s12dg and maximal temperature in the
adiabatic combustion wavefEqs.s21d ands22dg for different
stoichiometry and porosity. It is important that due to imper-
fect mixing on the microscopic scalesthe scale of structural
elements of the mixtured the maximal conversion degree
Ãs« ,fd appears to be substantially lower than 1 and the
maximal heating at complete burning of the stoichiometric
mixture is not achievedsTable Id. It can be seen that maximal
adiabatic heatingDTad

max is attained at the equivalence ratio
fp greater than 1 for a mixture with stoichiometric coeffi-
cientnst.1: at largernst and« the deviation offp from unity
increases. At the same time, the conversion at pointf=fp,
where the temperature of the wave is maximal, is lower that
at f=1 sstoichiometric mixtured which is attributed to the
fact that maximal heating is attained at the maximum of
function Ãsfdpsfd.

Since the combustion wave velocityu strongly depends
on temperature, the calculations ofu reflect the above-
discussed effects of nonuniform mixing on the heat release
sFig. 3d. In Fig. 3, the velocities are shown as relative values
with respect to the maximal velocityumax attained at the
given stoichiometry, porosity, and perfect mixing. Thus all
the curves on chartsa,b, and c in Fig. 3 refer to different
velocity scales. For each combination of stoichiometry and
porosity, imperfect mixing lowers the combustion velocity
and shifts its maximal value to higher equivalence ratios if
nst.1. For mixtures with volumetric stoichiometric ratio
1 : 1 this shift is absent.

Note that within the frame of the above modelsthe num-
ber of interfacial contacts per lattice site does not change
during the reactiond the dependence of the velocityu on the
equivalence ratiof has a sharp peak at perfect mixing of
reactants. The use of different model retardation functions
fshd does not remove this peakscurves 1 in Fig. 3d because

this is a peculiarity of the perfect mixing model. From this
standpoint, combustion in solid heterogeneous mixtures dif-
fers essentially from gas-phase combustion: in gases mixing
proceeds continuously during reacting whereas in solid
flames onlypremixingdetermines the system structure and
interphase reaction area.

The combustion of solid heterogeneous mixtures is a
complex process and the proposed model does not include
such factors as phase transitionssmeltingd, dependences of
thermal properties on the mixture composition, porosity, and
temperature. The main goal of this work is to take into ac-
count in the simplest way the effect of structure randomness
on the combustion of binary solid mixtures. Therefore the
comparison of the obtained results with experimental data in
this case may be performed on the qualitative or semiquan-
titative level only. Most suitable systems for comparison
with our model are monodisperse mixtures used for solid-
flame combustion. Unfortunately, data for such systems are
scanty in literature. Here we use data from Ref.f17g where
combustion of the Al/NiO system was studied as a function
of the mixture composition. One of those results which is
important for comparison with our model is presented in Fig.
4. As can be seen, the shift of the maximum combustion
wave velocity to Al-richer mixturessf.1d in this system
really exists. A similar shift of the maximal combustion wave
velocity was observed in Ref.f18g for systems Al/Ni2O3 and
Al/Fe2O3. According to data from Ref.f17g, the volumetric
stoichiometric coefficient for mixture Al/NiO isnst=1.72
sthe mass fraction of AlzAl =0.19d while the maximal veloc-
ity is attained atfp<1.8 szAl =0.30d. We can compare this
shift with that obtained in our model fornst=1.72 and poros-
ity «=0.4, which corresponds to the experimental packing

TABLE I. Mean final conversionÃ and dimensionless adiabatic
heatingDTad

max/DTad
st for systems with different stoichiometry and

porosity.a

Stoichiometry Porosity fp DTad
max/DTad

st Ãuf=1 Ãuf=fp

1:1 0.0 1.0 0.80 0.80 0.80

snst=1d 0.05 1.0 0.75 0.78 0.78

0.10 1.0 0.70 0.77 0.77

0.20 1.0 0.60 0.75 0.75

0.40 1.0 0.41 0.68 0.68

1:2 0.0 1.18 0.82 0.82 0.74

snst=2d 0.05 1.22 0.77 0.81 0.71

0.10 1.22 0.72 0.78 0.70

0.20 1.27 0.61 0.76 0.66

0.40 1.33 0.41 0.66 0.57

1:3 0.0 1.35 0.81 0.78 0.65

snst=3d 0.05 1.39 0.75 0.76 0.63

0.10 1.43 0.70 0.73 0.60

0.20 1.45 0.59 0.70 0.57

0.40 1.62 0.39 0.60 0.46

afp is equivalence ratio at which adiabatic heating is maximal;DTad
st

is adiabatic heating in stoichiometric mixture at perfect mixing;
DTad

max is maximal adiabatic heating in disordered mixture.
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density in Ref. f17g. Our calculations give the valuefp

<1.3. Considering all the above discussed limitations of the
model, this correlation between the theoretical and experi-
mental data can be regarded as satisfactory. Along with the
aforesaid thermophysical limitations, there is a structural rea-
son for a discrepancy between the experiments and theory:
the proposed model does not take into account the polydis-

persity of a mixturesparticlesA andB have equal sized. At
the same time, it is known that the velocity of combustion
depends on a particle size distributionsthis fact is outlined in
Ref. f17g, tood. It can be expected that a correlation between
experiment and the model will become better when the poly-
dispersity is taken into account. But simultaneous consider-
ation of random internal structure and polydispersity of a
mixture is a complex statistical and geometrical problem and
would be the subject of future investigation.

V. CONCLUSION

A combined geometrical and physicochemical model is
proposed which includes the effect of structural disorder of
solid binary reactant mixtures on the combustion process.
The results of modeling permit describing such known ex-
perimental facts as incomplete conversion of the reactants, a
decrease of adiabatic heating, and a shift of the maximum
combustion velocity away from the stoichiometric ratio.
Since the effect of nonuniform mixing is important for both
the combustion wave characteristics and the properties of
final SHS products, this model should be integrated into
more complete models of solid-flame combustion.
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FIG. 3. Relative velocity of the combustion wave in the struc-
turally disordered binary heterogeneous mixture. Curves: 1 for the
model of perfect mixingsarbitrary «d; 2–5 for disordered systems
s«=0, 0.1, 0.2, 0.4, respectivelyd.

FIG. 4. Combustion wave velocity vs mass fraction of alumi-
num and equivalence ratiof according to Ref.f17g.
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